Linear Groups and Square Properties in Rings
نویسندگان
چکیده
In [1] a proof was given of Fermat’s Two-Square Theorem using the group theoretical structure of the classical modular group. This has been extended in many directions and to other square properties in general rings. In particular in [2] a two-square theorem was given for the Gaussian integers in terms of when ii is a quadratic residue. In this note we examine and survey this technique and the corresponding results and extensions.
منابع مشابه
On a generalization of central Armendariz rings
In this paper, some properties of $alpha$-skew Armendariz and central Armendariz rings have been studied by variety of others. We generalize the notions to central $alpha$-skew Armendariz rings and investigate their properties. Also, we show that if $alpha(e)=e$ for each idempotent $e^{2}=e in R$ and $R$ is $alpha$-skew Armendariz, then $R$ is abelian. Moreover, if $R$ is central $alpha$-skew A...
متن کاملCommuting $pi$-regular rings
R is called commuting regular ring (resp. semigroup) if for each x,y $in$ R there exists a $in$ R such that xy = yxayx. In this paper, we introduce the concept of commuting $pi$-regular rings (resp. semigroups) and study various properties of them.
متن کاملGeneralized f-clean rings
In this paper, we introduce the new notion of n-f-clean rings as a generalization of f-clean rings. Next, we investigate some properties of such rings. We prove that $M_n(R)$ is n-f-clean for any n-f-clean ring R. We also, get a condition under which the denitions of n-cleanness and n-f-cleanness are equivalent.
متن کاملC*-Extreme Points and C*-Faces oF the Epigraph iF C*-Affine Maps in *-Rings
Abstract. In this paper, we define the notion of C*-affine maps in the unital *-rings and we investigate the C*-extreme points of the graph and epigraph of such maps. We show that for a C*-convex map f on a unital *-ring R satisfying the positive square root axiom with an additional condition, the graph of f is a C*-face of the epigraph of f. Moreover, we prove som...
متن کاملOn categories of merotopic, nearness, and filter algebras
We study algebraic properties of categories of Merotopic, Nearness, and Filter Algebras. We show that the category of filter torsion free abelian groups is an epireflective subcategory of the category of filter abelian groups. The forgetful functor from the category of filter rings to filter monoids is essentially algebraic and the forgetful functor from the category of filter groups to the cat...
متن کامل